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Lake Erie has experienced substantial environmental issues (e.g., hypoxia, harmful algal blooms) for dec-
ades, which are closely related to the lake’s thermal characteristics. While three-dimensional (3D) hydro-
dynamic models have been widely applied to Lake Erie, challenges remain due to model representation of
physical processes, errors and uncertainty in boundary conditions and forcing terms. The Great Lakes
region has a relatively dense and long-term observational record, and these observational data have been
used for model initialization and verification, but have not been incorporated into 3D model simulations
through data assimilation (DA) to create reanalysis products or improve short-term forecasts. In this
work, we developed and evaluated DA to improve thermal structure simulation of Lake Erie. Moored
instrument data and satellite data are incorporated into a data-assimilative hydrodynamic model for
analysis and evaluation. Results show that DA can effectively improve the model performance to create
reanalysis fields when the DA formulation is appropriately developed in recognition of the dynamic com-
plexities and anisotropic error covariances of Lake Erie. The data assimilative model also improves fore-
casting accuracy and restrains forecasting uncertainty to an acceptable level on a timescale of 1–7 days
after being unleashed from DA. Lastly, data sampling strategies based on an error correlation map are
examined. Results show the method can effectively reduce the sampling effort while still achieving sim-
ilar model skills with potential for optimal design of an observation network or field sampling strategy.
� 2019 The Author(s). Published by Elsevier B.V. on behalf of International Association for Great Lakes

Research. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Lake Erie, the shallowest and southernmost of the Great Lakes,
has experienced substantial environmental issues for decades
including large-scale low-oxygen (hypoxic) conditions (Burns
et al., 2005; Daloglu et al., 2012) and algal blooms (Conroy et al.,
2005; Michalak et al., 2013; Chaffin et al., 2013). The occurrences
of hypolimnetic hypoxia, algal blooms and substantial eutrophica-
tion are closely related to Lake Erie’s limnological and thermal
characteristics. In the central basin, where the average water depth
is 18.3 m, the position of the thermocline varies significantly from
year to year in response to changes in meteorological conditions.
This is a key factor affecting the development of hypoxia
(Schertzer et al., 1987; Zhou et al., 2013). The western basin is
the shallowest basin with an average depth of 7.3 m and reduced
stratification (Schertzer et al., 1987). Water temperature and
excessive nutrient loading significantly influence the timing and
magnitude of phytoplankton blooms in this portion of the lake
(Nicholls and Hopkins, 1993; Arnott and Vanni, 1996;
Makarewicz et al., 1999; Vanderploeg et al., 2001; Smith et al.,
2005; Millie et al., 2009; Chaffin et al., 2013).

To better understand Lake Erie’s biophysical characteristics,
accurate estimates of lake surface temperature (LST) and thermal
structure are required. Significant advancements of 3D hydrody-
namic models for the Great Lakes have been made since the nine-
ties (Schwab and Bedford 1994; Beletsky et al., 2006; Wang et al.,
2010; Huang et al., 2010; Chu et al., 2011; Fujisaki et al., 2013; Xue
et al., 2015; Anderson et al., 2015; Xue et al., 2017, 2018; Ye et al.,
2019; Kelley et al., 2018; Huang et al., 2019). However, challenges
remain due to errors in model representation of physical processes,
boundary conditions, or forcing terms. Ecologically, even relatively
small changes in the thermal characteristic of lakes can cause sig-
nificant shifts in phytoplankton, bacterioplankton, zooplankton
populations, and associated metabolic processes in aquatic ecosys-
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tems. (Tulonen et al., 1994; Drinkwater et al., 2003; Adrian et al.,
2009; Arvola et al., 2009). Therefore, further improvement in sim-
ulating the lake’s physical conditions is of great importance.

With regards to data, the Great Lakes region has a fairly dense
and long-term observational record of meteorological and physical
variables, as compared to other coastal seas and deep oceans. In-
situ measurements and remotely sensed data have been widely
used for model initialization and verification, but have not been
incorporated into 3D model simulations to improve short-term
forecasts or create reanalysis (Hawley et al., 2006; Zhang et al.,
2007). Data assimilation (DA) is the most effective approach for
statistically combining observational data and model dynamics to
provide the best estimate of system state (Robinson and
Lermusiaux, 2000; Li et al., 2008a,b; Chao et al., 2009;
Houtekamer and Zhang 2016; Bannister et al., 2017). Furthermore,
despite significant development of various observing approaches,
time and space coverage of observational datasets, particularly
subsurface measurements, remains very limited due to the high
costs of building and maintaining observing networks. Optimized
data sampling design is, therefore, one of the key research topics
to the success of an integrated observing and forecasting system
for the Great Lakes. DA can also be used to design appropriate
monitoring, field sampling and management programs (Bishop
et al., 2001; Zhang et al., 2007; Xue et al., 2011, 2012; Hoffman
and Atlas 2016).

The purposes of this study are to develop and evaluate com-
bined modeling-DA approaches for Lake Erie to improve lake ther-
mal structure simulations, create hydrodynamic reanalysis
products, improve the accuracy of short-term forecasts, and to pro-
vide guidance for optimizing sampling strategies. Various DA
schemes have been developed and applied to ocean and atmo-
sphere model systems, such as nudging, optimal interpolation
(OI), three- or four-dimensional variational analysis (3D- or 4D-
VAR), Kalman Filter (KF) and their variants. They differ in compu-
tational cost and optimality, and in their suitability for real-time
data assimilation. From the perspective of estimation theory, nudg-
ing and OI can be regarded as simplified schemes of KF with empir-
ically assigned gain matrix (Robinson and Lermusiaux, 2000),
while in KF, the analysis gain is computed internally and updated
Fig. 1. Panel (a): Lake Erie thermistor data coverage for 2005; Panel (b): bathymetry with
are marked as black dots and data from stations (T05, T14, T15 noted with cross marks) a
Summer observational data is not available at T06; Panel (c): Vertical resolution of ther
continually. As the first step toward incorporating data assimila-
tive capability into the National Oceanic and Atmospheric Admin-
istration (NOAA) Great Lakes Operational Forecasting System
(GLOFS), we focus on nudging and OI data assimilation because
both methods are fairly straightforward, powerful and computa-
tional efficient. They are often the preferred choices in the early
stages of data-assimilative system development for a balance
between efficiency, effectiveness, and flexibility in
implementation.
Observational data and hydrodynamic model

We use both moored instrument data and satellite data for
analysis, assimilation, and verification. Specifically, the in-situ data
are both assimilated and used for verification (withheld data),
while the satellite-based LST is used for verification and for con-
struction of the background error covariance matrix. Moored
instrument data include continuous vertical temperatures profiles
during summertime from a series of 13 thermistors deployed in
Lake Erie during 2005 (Fig. 1a–c), as part of the International Field
Years on Lake Erie (IFYLE) (Brandt and Lansing 2006). IFYLE was
initiated and managed by NOAA’s Great Lakes Environmental
Research Laboratory (GLERL), in collaboration with researchers
from the U.S., Canada, and Europe (www.glerl.noaa.gov/res/pro-
jects/ifyle/).

Satellite data used in this study are from the NOAA CoastWatch
GLSEA (Great Lakes Surface Environmental Analysis) product.
GLSEA uses cloud-free portions of Advanced Very High-
Resolution Radiometer (AVHRR) SST imagery to create a daily dig-
ital map at 1024 � 1024 pixels. It utilizes linear geo-correction and
a cell-based interpolation and extrapolation procedure, and has
seven daytime and five nighttime cloud masks. The GLSEA data
are updated daily with information from the cloud-free portions
of the satellite imagery. A smoothing algorithm is applied to the
map for days when no imagery is available. Detailed validation is
documented by (Schwab et al., 1992, 1999). A comparison between
GLSEA data and thermistor in-situ observations near the surface
shows the GLSEA has accurate representation of LST (Fig. 2).
thermistor observations, data that are used for assimilation in various experiments
re not assimilated into the model but only used to verify the regional impact of DA.
mistor data; Panel (d): FVCOM model grid resolution.

http://www.glerl.noaa.gov/res/projects/ifyle/
http://www.glerl.noaa.gov/res/projects/ifyle/


Fig. 2. Comparison between GLSEA data and thermistor in-situ observations when the thermistor data are available at 1-m from the surface. Notice T04 is measured at 3.5 m
from the surface.
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The hydrodynamic model is based on the NOAA Lake Erie Oper-
ational Forecast System (LEOFS; Kelley et al., 2018), a real-time
nowcast and forecast system based on the Finite Volume Commu-
nity Ocean Model (FVCOM; Chen, 2006). FVCOM is an oceano-
graphic hydrodynamic model that solves the three-dimensional
integral form of the governing equations on an unstructured,
sigma-coordinate mesh. FVCOM has been applied in many coastal
systems, including successful adaptation and implementation into
the Great Lakes (Anderson and Schwab, 2013; Anderson et al.,
2015; Xue et al., 2015; Anderson and Schwab, 2017; Xue et al.,
2017; Ye et al., 2019; Huang et al., 2019)). In the upgraded NOAA
operational model for Lake Erie (Kelley et al., 2018), the FVCOM
model is developed with horizontal resolution ranging from 200
to 2500 m (Fig. 1d), and 21 vertical sigma (terrain-following) lay-
ers. The inflow and outflow to the lake are established via open-
boundaries at connecting channels, Detroit and Niagara Rivers. At
the Detroit River, the water level is prescribed along the open
boundary from the NOAA National Ocean Service (NOS) water level
gauge at Gibraltar, MI (9044020) using 6-minute observed data.
The outflow is established by prescribing 6-minute water level at
the head of the Niagara River, using a dynamic offset from
observed water levels from the NOS gauge at Buffalo (9063020)

For this study, the model was run in hindcast mode using
hourly surface forcing meteorology, interpolated from
temporally- and spatially-varying coastal weather stations and
in-lake buoys. This procedure has been adopted in many studies
of Great Lakes hydrodynamics (Schwab and Bedford, 1994). Model
simulation was carried out for the year 2005 using surface condi-
tions for 10-meter wind, 2-meter air temperature, 2-meter dew-
point temperature, and total cloud cover supplied to FVCOM. The
LEOFS implementation of FVCOM uses the SOLAR heat flux subrou-
tine (Liu and Schwab, 1987), developed specifically for the Great
Lakes (Beletsky et al., 2003; Anderson and Schwab, 2013; Rowe
et al., 2015). The model was run with both external and internal
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mode time steps of 10 s. FVCOM uses the Mellor and Yamada level
2.5 (MY-2.5) and Smagorinsky turbulent closure schemes as
default configurations for vertical and horizontal mixing, respec-
tively (Mellor and Yamada, 1982; Smagorinsky, 1963).

DA algorithms and design of numerical experiments

Assimilation schemes

A DA system consists of three components: a set of observa-
tions, a dynamical model, and an assimilation scheme (Robinson
and Lermusiaux, 2000). With the notation conventions suggested
by Ide et al. (1997), vectors are represented by boldface lowercase
letters, and matrices by boldface uppercase letters. We use the
unbolded lowercase letters for scalars. The superscript
}f }; }a }; }t } stand for the forecast, the analysis, and the truth,
respectively. The superscript ‘‘T” and ‘‘-1” denote matrix transpose
and inverse. Consider a system with a model state vector x (in our
case, it represents temperature values at n model grids in 3-D
space),

x ¼ ðx1; x2; � � � ; xnÞT

Similarly, we denote the observation vector y in 3-D space,

y ¼ ðy1; y2; � � � ; ymÞT

where m is the number of observational data points in 3-D space.
An observation operator, H, is required to map the model state to
the observation locations to evaluate the model-data misfit,

denoted as a vector d ¼ ðd1;d2; � � � ;dmÞT,where d ¼ y �Hxf . The
operator H can be a linear or nonlinear function of the model vari-
ables, although it could often be a simple interpolation operator.

Sequential data assimilation provides a state estimate on an
ongoing basis, iteratively alternating between a forecast (simula-
tion) step and a state estimation (assimilation) step; the latter step
is often called the ‘‘analysis” (Hunt et al., 2007). The analysis step at
a given time ti combines results from a priori forecast (simulation)
(xf ðtiÞ) and information from current observations yðtiÞ to produce
a current state estimate (xaðtiÞ). This estimate xaðtiÞ is then used as
initial condition for the next simulation cycle xf ðtiþ1Þ), which is
subsequently used for estimating the next analysis xa tiþ1ð Þ, when
new observations yðtiþ1Þ are available.

To estimate the state of the system and reduce model simula-
tion error, an essential component of a priori hypothesis is to define
the statistics of model and observation errors with respect to the
true state using error covariance matrices (Bouttier and Courtier,
2002). For an assimilation cycle (e.g. at a given time ti), the optimal
linear least-squares estimation theory states:

xa ¼ xf þ Kd ð1Þ

K ¼ BHT HBHT þ R
� ��1

ð2Þ

where xf and xa are the forecast (simulation) state and analysis
state as defined above. The linear operator K , is the gain (or weight)
matrix of the analysis. The weight matrix is determined by the
model error covariance matrix B (referred to in Bouttier and
Courtier, 2002 as the background error covariance) that is projected
onto the observations by H and HT , the observation error covariance
matrix R, and the misfit between the model simulation and obser-
vation d. Under different assumptions and approximations, this
leads to various sequential assimilation schemes such as nudging,
OI and Kalman Filter (For detailed mathematical formulation, please
see Lorenc, 1986; Ghil and Malanotte-Rizzoli, 1991; Ide et al., 1997;
Robinson and Lermusiaux, 2000). In this study, we approximate and
simplify it to two variants of nudging and OI with localization.
It is commonly assumed there is an influence area for each of
the observations (i.e. localization), and if observations are sporadic
and only have local influence, the background correlation does not
necessarily need to be specified globally (Bouttier and Courtier,
2002). That is, for a given observation yj, [j=1;2 � � �,m], only model
results on the grids within the influence area of observation yj
should be corrected based on the model-data misfit, dj , [j=1;2 � � �,
m].

Correction of 3D temperature fields using nudging assimilation

In the nudging method, the analysis equation is simplified as,

xami
¼ xfmi

þ Kmi
dj ð3Þ

where i ¼ 1;2; � � � L, and m1;m2; ::mL denote total L model grids
within the influence area of a given observation station yj, and
Kmi

is a product of weight functions expressed as:

Kmi
¼ w xymi

�w zmi
�w tmi

� Ga ð4Þ
where w xymi

; w zmi
; w tmi

are functions describing horizontal, ver-
tical, and temporal temperature correlation, respectively, between
the location of model gridmi½i ¼ 1;2; � � � L� and the location of obser-
vation yj. A nudging coefficient (Ga ¼ 7:6e�3) is used for each time
step. Empirical correlation functions are constructed based on the
following principles (Bouttier and Courtier, 2002): 1) the correlation
functions must be smooth and dynamically constrained in physical
space; 2) the correlation functions should be zero for long-distance
separations if observations have only a local effect on the DA anal-
ysis; and 3) three-dimensional correlation can be built by combin-
ing separability considering different correlation physical scales on
the horizontal and vertical.

Horizontally, for each observation, the localized correlation
function w xy is parameterized in two steps. In the first step, an
empirical maximum characteristic correlation distance of 20 km
(note that we also tested other empirical values of 15 km and
25 km; however, the results were similar or less desirable) is pre-
scribed using the Cressman formula, a distance-dependent func-
tion that decays to zero beyond the specified correlation
distance, so it shows decaying correlation strength from the center
to 20 km away (Houtekamer and Mitchell, 2001; Hunt et al., 2007).
Therefore, an observation only affects the model state within such
a distance in DA analysis. A vector crstores the Cressman-based
correlation strength for all model grids (m1;m2; ::mL) located
within the 20 km correlation distance. This only represents an iso-
tropic horizontal correlation pattern without considering the local
physical process. In the second step, a local vector cl for the L
model grid points (m1;m2; ::mL) within the 20 km correlation dis-
tance is used to store the local correlation pattern between each
of these model grids and the observation location. The estimation
of cl is based on the Pearson correlation coefficient using the time
series of model simulation of temperature over the summer 2005
for each model grid. For example, the ith element of vector cl stores
the correlation coefficient between the model grid pointmi and the
observation location, which is calculated based on the modeled
temperature time series from the summer 2005 at the model grid
point mi and the observation location. The final correlation w xy is
formed as cr o cl, where the operator ‘‘o” is the Hadamard Element-
wise multiplication.

Two examples of the formulated empirical horizontal correla-
tion w xy at two observations in the central basin (T09) and the
coastal region (T10) are shown in Fig. 3a. The correlation scale is
more isotropic in the central basin, while anisotropic correlation
is formed in the nearshore region, with more significant correlation
in the longshore direction along isobaths and weaker correlation
across the local isobath.



Fig. 3. Examples of the horizontal error correlation pattern at two observations at the central basin (T09) and the coastal region (T10) (a), and vertical correlation pattern at a
depth of 5 m (b).
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The vertical correlation w z is specified explicitly using the
Cressman formula with an impact radius of 5 m. The impact radius
of 5 m is selected empirically based on the vertical correlation
analysis at observations T04, T05 and T12 (Fig. 1c) where the ver-
tical resolution of observations is relatively coarse. Sensitivity anal-
ysis also suggests the selection of a vertical impact radius is not
very sensitive in our experiments because the vertical resolution
of thermistor data is high (1–2 m) at most observation locations
(Fig. 1c). It should be noted that the selection of a vertical impact
radius needs to be further tested, particularly for cases when the
vertical resolution of observational data is low. An underestimated
impact radius could limit the ability of the observation to correct
model bias beyond that length and lead to an incorrect shut down
of convective mixing (Scott et al., 2018) while an overestimated
impact radius could spread observational information to an extent
that may be non-physical. The vertical and cross-shore correlation
pattern for an observation in the coastal region is demonstrated in
Fig. 3b.

Lastly, the temporal weighting function is defined such that the
observation is given full weight over the first half of the assimila-
tion window, with the weight decreasing linearly to zero over
the second half of the assimilation window. The temporal weight-
ing functions is defined as

w t ¼
1; t � t0j j < Tw=2

Tw� t�t0j j
Tw
2

; Tw=2 � t � t0j j � Tw

0; t � t0j j > Tw

8><
>:

ð5Þ
where Tw is the assimilation time window (=96 h) and t0 is the
observation acquisition time.
Further correction of the LST using OI assimilation

LST is one of the most important physical variables for physical,
biological, and climate studies for the Great Lakes. Limited in-situ
observations can be available real-time, but are often too sparse
to make direct spatiotemporal mapping of LST over the entire lake.
One of our interests is how to use the information from the GLSEA
to improve spreading of information from sparse, real-time, in-situ
observations (e.g. thermistor data) over the lake surface. To that
end, we develop an OI assimilating in-situ observations for further
correction of the LST. The thermistor data are assimilated vertically
using nudging, and then the corrections from the nudging at obser-
vation locations are further spread in the horizontal at the lake sur-
face using OI.

For the OI, we first estimate a stationary model error covariance
matrix B for the LST (notice B only needs to contain the 2-D hori-
zontal information as it is for the correction of LST) using the dif-
ference between modeled LST results and GLSEA in the hindcast
simulation of 2002–2004 (prior to the assimilation year 2005),
and apply Eqs. (1) and (2) to conduct data assimilation for 2005,
which allows us to make a correction of the LST by assimilating
the in-situ thermistor data sampled in 2005. It is noted that the
GLSEA data are never directly assimilated into our model. The
GLSEA data in 2002–2004 is used to estimate the model error



Table 1
Summary of the design of numerical experiments.

Experiment
name

Assimilation
scheme

Data assimilated Experiment
purpose

CR Free run Baseline
DA#1 Nudging 10 out of 13 thermistor data

(T02,T04,T07,T08,T09,T10,
T11,T12,T13,T16)

Hindcast
improvement

DA#2 OI 5 out of 13 thermistor data
(T04, T07, T08, T11, T12)

Optimization
of data
sampling
design

FC#1 Nudging and
free run

10 out of 13 thermistor data
(T02,T04,T07,T08,T09,T10,
T11,T12,T13,T16)

Forecast
improvement

FC#2 OI and free
run

5 out of 13 thermistor data
(T04, T07, T08, T11, T12)

Forecast
improvement
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covariance matrix B; the GLSEA data in 2005 is used for model-data
comparison to evaluate the performance of data assimilative
model. The model error covariance matrix B is defined as

B ¼ xf � xtð Þ xf � xtð ÞT , where xf and xt denotes the model state
and true state. Here we have used the GLSEA data as proximity
to the true state xt of LST for the summers of 2002–2004 in this
experiment. Observation error covariance matrix R is assumed
diagonal with the main diagonal value set as the square of the
RMSE between GLSEA and thermistor data near the surface as
shown in Fig. 2.

For the localization, we still follow the assumption that each
observation has its own influence area, and we construct more nat-
ural, irregular influence areas that vary for each of the observations
based on the strength of error covariance. In this case, the analysis
equation becomes

xami
¼ xfmi

þ corr mi;myj

� �
�
rmi

� rmyj

r2
myj

þ r2
yj

� dj ð6Þ

where i ¼ 1;2; � � � L, and midenote the total L model grids within the
influence area of a given observation station yj; corr(mi; myi ) is the
correlation between modeling error at model grid mi and modeling
error at the location of observation yj; rmi

and r2
myj

are variances of

modeling error at gridmi and at the location of observation yj; r2
yj
is

the observation error variance (the main diagonal value of R) at
observation yj. The detailed derivation of Eq. (6) is provided in
Appendix A. Eq. (6) shows that the DA can be directly associated
with the error correlation map, which is detailed in Section 4.

Design of numerical experiments

To analyze the DA effectiveness and efficiency in supporting
model hindcasts, forecasts, and to assist in data sampling design,
five numerical experiments are designed and carried out. All of
the experiments use the same atmospheric forcing and hydrody-
namic model configuration.

The first case is a control run (CR). In this case, the model is set
up as a standard simulation with the default configuration of
LEOFS. The model simulation starts from January 1st, 2002 and
continues until September 30th, 2005. LST simulation results in
the summers (July-September) of 2002–2004 are evaluated against
GLSEA data to estimate the model error covariance matrix B; sim-
ulation results in year 2005 between July and September serve as a
baseline for DA evaluation.

In case DA#1 (Data Assimilation case #1), the data assimilative
model is configured using the nudging method. The model is
restarted from July 1st, 2005 and run until the end of September
using the CR restart file to make the two cases comparable for
the analysis period of summer 2005. Assimilation is carried out
at an approximately hourly interval, when the observational data
are available. DA#1 is designed to evaluate the impact of DA on
improving the model hindcast accuracy.

In case DA#2 (Data Assimilation case #2), the data assimilative
model is configured using the OI approach for LST correction. This
case is also restarted from July 1st, 2005 and run until the end of
September using the CR restart file to make the two cases compa-
rable for DA evaluation. DA#2 is designed to utilize historical
remote-sensed GLSEA data to improve assimilation of scattered,
real-time in-situ observations (e.g. thermistor data) and test opti-
mal data sampling strategy for LST assimilation.

In cases of FC#1 (Forecast#1) and FC#2 (Forecast#2), the model
is configured the same as in the case of DA1 and DA2, respectively.
The assimilation is turned off on August 31, 2005. Afterward, the
model is run for one month without DA (representing a forecast
scenario), from September 1st to 30th. September 1st is selected
because it is when the modeling simulation error from the control
run starts to amplify quickly and results in large model bias. These
two cases are designed to evaluate the impact of DA (when data
are available for assimilation at the hindcast and nowcast stages,
i.e., before September 1st) on improving short-term forecasting
accuracy (no observational data available for forecasting, i.e., after
September 1st). In all cases, model outputs have been interpolated
to the same grid as the observations so direct comparisons can be
made.

A summary of the configuration of these experiments is pre-
sented in Table 1.
Results

In Lake Erie, the LST shows large seasonal and interannual vari-
ability (Fig. 4). The lake typically has the lowest water temperature
during February and March, and the water temperature reaches its
peak in August (occasionally July or September) with the LST of
~21–26 �C during the summer time. The interannual variability
of the lake-mean summer LST can vary ± 5 �C relative to its clima-
tological mean (Fig. 4-a). The most interannual variability is
observed in the central basin with a standard deviation of
>0.85 �C, while the shallow western basin shows a slightly lower
interannual variability with a standard deviation of 0.75 �C
(Fig. 4c). The spatial pattern of LST climatology is mainly
latitude- and depth-dependent (Fig. 4b). The shallow western
basin and the southwest coastal region are characterized with
the highest LST of ~22.5–23 �C while less warm water (21.5–
22.5 �C) exists in the majority of central basin and eastern basin.
A band of relatively cold water (<21 �C) occupies the northern
coast, approximately constrained within the local isobaths of the
0–20 m. The year of 2005 is one of the warmest years with rela-
tively high summer LST.

The model results from the control run (CR) serves as a baseline
to evaluate the model skill. The model configuration is described
above. In the CR experiment, the simulated lake-mean LST shows
good agreement with the GLSEA data (Fig. 5a,b,d). The model sim-
ulations reproduce the LST seasonal cycles in both magnitude and
phase, and also capture cooling and warming events on synoptic
time scales. The summer mean LST is 23.88 �C from GLSEA and
24.22 �C from the CR experiment with a root-mean-square-error
(RMSE) of 0.85 �C over the summer. On a closer comparison, the
major errors from the CR simulation during the summer arise
when LST starts to decrease in September, with a noticeable warm
bias up to 1.5 �C (RMSE of 1.21 �C). Spatially, a warm bias up to 2 �C
is shown in the central basin and western basin, while a band of
cold ‘‘bias” up to 2.5 �C is shown in the northern coast. (we note



Fig. 4. Twenty-year climatology (1995–2017) envelopes of observed lake mean surface temperature from GLSEA (gray ribbon) with the climatological mean (blue line), LST of
2005 (red line), and model simulation results from CR (black line) in upper panel (a), climatological spatial pattern of LST of 1995–2017 (b) and corresponding standard
deviation(c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Spatial pattern of LST during 2005 from GLSEA data(a), CR experiment (b), DA#1 experiment (c), lake-mean LST for four cases (d), model bias (model-GLSEA) for CR (e),
for DA#1 (f).
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Table 2
Skill Scores (SS) of modeled temperature profiles at the locations of the thermistor
moorings in different numerical experiments. No observation available from T02 for
forecasting comparison.

Stations SS in DA#1 SS in DA#2 SS in FC#1 SS in FC#2

T02 0.8631 0.0009 N/A N/A
T04 0.2402 0.5805 0.0851 0.5797
T05 0.4314 0.2076 0.3883 0.5101
T07 0.717 0.9652 �0.0932 �0.024
T08 0.804 0.9856 0.7888 0.5652
T09 0.8965 0.4899 0.2578 0.463
T10 0.6859 0.1942 0.23 0.136
T11 0.6189 0.967 0.3691 0.4005
T12 0.783 0.9831 0.7919 0.6263
T13 0.9373 0.2753 0.7441 �0.154
T14 0.5533 0.0108 �0.2231 0.4023
T15 �0.1534 0.3354 0.3864 0.4113
T16 0.8062 �0.2996 0.6615 �0.0588
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there have been discussions that the nearshore cold band may be
due to realistic upwellings but need to be further validated with
in-situ observations).

The DA#1 experiment answers the question whether or not the
DA can improve model simulation through the assimilation of
thermistor data, in the sense of enhancing model accuracy not only
at the observation locations but also on regional scales. Results
shows the nudging method can effectively improve model simula-
tions in LST (Fig. 5c,d,f) and thermal profile near observations when
local decorrelation scale is properly specified. In DA#1, the data
assimilative model provides an improved lake-mean LST over the
entire summer (RMSE is reduced to 0.46 �C). In particular, the large
Fig. 6. Vertical temperature profiles from the thermistor observation (T12) (panel a; data
bias (model-observation) from CR e) and from the DA#1 (f).
warm bias during September is reduced by ~50% with considerably
improved model accuracy on the lake-wide scale (Fig. 5d) with a
RMSE reduced to 0.68 �C. Spatially, the aforementioned warm bias
in the central basin is effectively removed (Fig. 5e, f) with a rem-
nant bias below 0.5 �C in the majority of the central basin. In addi-
tion, the warm bias in the western basin is also reduced by 15%.

Modeled vertical thermal structures with and without data
assimilation are also evaluated in comparison to observed thermis-
tor data. Skill Score (SS) is used to quantitatively assess the
improvement of modeled temperature profiles with DA runs over
the CR (Table 2). The skill score (Murphy, 1988) is defined as:

SS ¼ 1� DA� Oð Þ2

CR � Oð Þ2
ð7Þ

where DA represents results from the assimilation run, CR repre-
sents model results from the control run, and O stands for observa-
tions. A positive SS indicates the DA improvement over the control
run, SS = 0 indicates no improvement, and a negative SS indicates
the assimilation result became worse than control run. Table 2
shows that the assimilation in DA#1 improved 12 out of 13 stations,
10 stations received a skill score >0.5, i.e. the mean-square errors in
these locations have been reduced at least 50%. It is noted that
improvement is seen at stations (T05, T14) where data are not
assimilated into the model.

Figs. 6–8 illustrate DA improvement at three different stations
where model results from the CR experiment shows different error
patterns. For example, in the eastern basin, the observation data
(T12) shows strong near-surface (0–20 m) warming between July
and September with a sharp thermocline, below which the water
temperature drops abruptly below 6 �C (Fig. 6a). In the CR
location in panel d), from the CR experiment (b), and from the DA#1 (c), and model



Fig. 7. The same as Fig. 5 but for the comparisons at the thermistor sampling station T09.

Fig. 8. The same as Fig. 5 but for the comparisons at the thermistor sampling station T05.
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Fig. 9. Maps of error correlation coefficient (left column) and corresponding
correction weight (right column) selected areas based on correlation coefficient
>0.75 for five thermistor observations (T04, T07, T12, T08 and T11).
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simulation, such a thermal gradient is not well resolved, and exces-
sive heat is dissipated to the deep water, which causes a warm bias
of 3–10 �C in the water column below the observed thermocline
(Fig. 6b, e). In the central basin, the model CR simulation performs
quite well in term of capturing the observed sharp thermocline but
slightly underpredicts the mixed-layer depth. This is demonstrated
by the model-data comparison at the observation (T09) in the cen-
tral basin (Fig. 7). While the observed thermocline is located
around 15 m in July and deepens to 18 m in August, the CR exper-
iment shows the model underestimates the mixed-layer depth and
predicts the thermocline at ~10 m in July and ~15 m in August
(Fig. 7a, b). As the water temperature changes drastically around
the thermocline, such a slight mismatch results in a significant cold
bias of up to 10–14 �C at around 15 m in July and early August
(Fig. 7e). In the western basin, where the water depth is much shal-
lower, and the model-observation discrepancy is generally smaller
(±1 �C) in the absence of a sharp thermocline, but a relatively large
synoptic bias (e.g., on August 1st) is observed. More importantly,
the general warm bias of ~1 �C persists (T05) in September
(Fig. 8a, b, e). Note that the T05 data is not assimilated; it also
demonstrated that model improvements are not limited to the
locations where observational data have been assimilated.

In the DA#1 experiment, the data assimilative model success-
fully corrects all types of the model biases described above. The
diffused thermal structure in the eastern basin is adjusted, and
thermocline is correctly presented around 15 m, eliminating
>90% of the warm bias in the CR experiment (Fig. 6c, f). The under-
estimated mixed-layer depth in the central basin in the CR exper-
iment is also corrected, resulting in a similar pattern to the
observed evolution of the thermocline change. Hence the substan-
tial cold bias near the thermocline in the central basin is elimi-
nated completely (Fig. 7c, f). In the western basin, the DA also
successfully corrects both the long-term warm bias in September
and the cold bias on the weather scale (Fig. 8c, f).

The results above show the nudging method can effectively
improve model simulations in LST and thermal profile by assimi-
lating thermistor data. Although the assimilation with prescribed
anisotropic correlation pattern improves the LST hindcast across
all lake basins, the local adjustment causes some disturbances in
the coherence of the spatial pattern of LST: several ‘‘patches” are
seen in the center basin, and the south-north temperature gradient
in Fig. 5c is not as organized as in Fig. 5b. We hypothesize that the
LST may be coherent on a large spatial scale and mainly controlled
by surface heat fluxes (Xue et al., 2015). Therefore, it could be
easier to estimate the error correlation pattern of LST than that
of sub-surface layers, and consequently the improvement of LST
on a basin scale may be achieved while retaining its spatial coher-
ence. If this hypothesis is true, fewer observations may be needed
for the LST assimilation if the sampling locations are strategically
selected. Our next question is how to optimize sampling locations
to minimize the sampling efforts while achieving similar assimila-
tion effectiveness which would eventually lead to optimal sam-
pling design. The DA#1 experiment is not able to address the
issue as the construction of error covariance is based on the pre-
scribed correlation length-scale. The above hypothesis and sam-
pling design experiment are tested in DA#2 analysis, in which
the error correlation map is derived from the difference of model
simulation and GLSEA data in the simulation of previous summers
(2002–2004).

The LST error correlation (i.e. corr i; jð Þ in equation (6)) and cor-
responding correction weight (i.e. corrði; jÞ � ri

rj
in Eq. (6)) are esti-

mated at 13 thermistor data sampling locations using model
results and GLSEA data. Five locations (T04, T07, T08, T11, and
T12) are selected for DA#2. The selection is based on choosing min-
imal number of sampling locations to give sufficient coverage of
the lake using a combination of high influence areas of the selected
observations, where high influence area is defined as the region
with an error correlation coefficient >0.75 for that observation
(Fig. 9). For example, the upper panels (Fig. 9) show the model
error near the western basin is well correlated with model error
at the sampling location T04 (Fig. 9a); therefore, the spatially vary-
ing corrections of model error near the western basin can be esti-
mated based on the departure of model results from the
observation at T04. Note that T02 would be a better choice than
T04 for the western basin, but unfortunately the observational data
at T02 are not available for the entire summer. In the majority of
the central basin, the model error of LST is closely correlated with
model error at the sampling location T07 (Fig. 9b). Fig. 9g provides
the spatial correction weights within the high influence area of T07
based on Eq. (6). Similarly, the other three observations are
selected to cover the eastern basin, western portion of the central
basin, and the northern coastal zone (Fig. 9c–e, h, i, j).

Under such a design, the model error is efficiently reduced
through DA. The modeled lake mean LST is in very good agreement
with GLSEA data over the entire summer (RMSE of 0.45 �C)
(Fig. 10d). In comparison, the DA#1 experiment only reduces errors
by 50% in September using 12 thermistor data, while the DA#2
experiment eliminates >90% of the warm bias in September using
only five selected thermistors with a RMSE down to 0.36 �C. The
improvement is not only seen from the lake average LST but also
from the spatial pattern of the summer LST. The warm biases in
the central basin and western basin are removed to a large extent



Fig. 10. Spatial pattern of LST during 2005 from GLSEA data (a), CR experiment (b), DA#2 experiment (c), lake-mean LST for four cases (d), model bias (model-GLSEA) for CR
(e), for DA#2 (f).

Fig. 11. Spatial pattern of LST on September 1st, 3rd, 5th, 7th, 2005 from GLSEA observation (a-d), CR (e-h), and FC#2 (i-l).
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(Fig. 10f,g). More importantly, the coherent pattern of LST on basin
scale is well preserved (Fig. 10c vs. Fig. 5c).

The DA#1 and DA#2 experiments show the effectiveness of DA
in improving model hindcasts and reanalysis. The third question is
to what extent the DA can help with the GLOFS short-term fore-
casting, which is evaluated in the experiments FC#1 and FC#2.
To represent a forecast scenario, we start with the DA-enhanced
nowcast conditions on Sept 1st, 2005. DA updates the model’s ini-
tial condition for the subsequent forecast during which no data
assimilation is used. September is selected for these experiments
Fig. 12. The time evolution of the temperature profile at T08, T12 and T09 from observat
respectively. Model errors in the CR and in the FC#1 at T08, T12 and T09 are shown in
because the modeling simulation error was shown to be the most
significant in the control run. The lake-wide average of LST in both
FC#1 and FC#2 experiments improves in comparison to CR exper-
iment. Results show that after the DA improves the forecast model
initial condition, the forecast results within the first few days
remain improved compared to the simulation (CR) (Figs. 5d and
10d). This can be clearly observed in Fig. 10d, which shows the
improvement of forecast results compared to the control run in
the DA#2 over the first 7 days of forecast. The error, of course,
amplifies over time and the LST returns back to the CR simulation
ion (a,d,g), CR simulation(b,e,h), and FC#1 simulation (c,f,i) in the 7-day forecasting,
panels (j,l,n) and (k,m,o), respectively.
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eventually after ~ 15 days, indicating the memory of impact of ini-
tial correction of temperature field is limited in the first 1–2 weeks.
(Fig. 10d).

Spatially, the GLSEA data show that the LST in the majority of
the lake stays below 24 �C with a constant cooling in the 7-day
forecast period. The CR experiment shows a warm bias of 1.5–
2.0 �C in the central and western basins over the same simulation
period. When the warm bias is corrected on September 1st with
DA, the LST error remains < 1 �C in the following 7 days without
DA (Fig. 11). The importance of DA in assisting forecasts is also evi-
denced by the improved results in simulating the lake thermal
structure. Fig. 12 demonstrates such improvement at various loca-
tions such as shallow water (T08), deep water in the eastern basin
with abruptly changing bathymetry (T12) and open water in the
central basin (T09). Although the model error is still amplified over
time after the model is unleashed from the DA after September 1st,
the magnitude of model forecast error is significantly reduced
compared to the CR simulation. This is quantitatively demon-
strated in the skill score for forecast experiments (Table 2). In the
FC#1 and FC#2 cases, 11 and 10 out of 13 stations show forecast
improvement, respectively.
Discussion and conclusions

Physical dynamics in coastal regions are often highly nonlinear
and vary significantly in time and space, where the results found in
one system may not be directly applied to other coastal regions
(Chen et al., 2009). The factors affecting success of DA include
hydrodynamic characteristics of the system, level of model accu-
racy, representation of error covariance in assimilation experi-
ments, effectiveness and efficiency of assimilating scheme,
computational resources, and availability of data sites (Xue et al.,
2011, 2012). This is why a feasibility study is crucial to the devel-
opment of a new data assimilative forecasting system that is sub-
ject to a long-term incremental improvement (Chassignet et al.,
2007; Martin et al., 2007; Chao et al., 2009; Farrara et al., 2013).

In this study, we developed and designed a series of DA exper-
iments with the aim to improve Lake Erie thermal structure simu-
lations. This is the first time, to our knowledge, multiple data
assimilation techniques have been evaluated and applied to a 3D
hydrodynamic model in the Great Lakes, and it serves as the foun-
dation for developing future real-time GLOFS-DA forecasting sys-
tems and optimal sampling strategy. Results suggest that DA can
effectively improve model performance with limited observational
data when the DA formulation is developed appropriately. The for-
mulation must take into account the dynamic characteristics of
Lake Erie and its anisotropic error correlation pattern. Prediction
skill of the data assimilative model is evaluated by examining
model performance after the model is unleashed from DA. The cor-
rection of initial condition by DA positively influences the predic-
tion results on a time scale of 1–7 days, and effectively
constrains the amplification of the model error.

The feasibility of optimizing data sampling design to improve
forecast models is also explored. The experiment targets the LST
as GLSEA data is available for lake surface error correlation analy-
sis. When the spatial error correlation is estimated appropriately,
using only five strategically selected thermistors of the thirteen
available, the DA can provide an accurate correction of the LST.
Although this method, at its current stage of development, cannot
be directly extended to 3D thermal structure assimilation because
of the lack of sufficient data to estimate error covariance in the
sub-surface layers, the experiment serves well as a proof-of-
concept to demonstrate the potential to improve model accuracy
with optimal data sampling efforts. It can also be extended to
observing system simulation experiments (OSSEs) to evaluate the
potential impact of new observing systems and alternative deploy-
ments of existing systems as a rigorous, cost-effective approach.

Dealing with error covariance is at the heart of DA (Derber and
Bouttier, 1999; Weaver and Courtier, 2001; Fisher, 2003; Pereira
and Berre, 2006; Fowler and Jan Van Leeuwen, 2013). In this study,
we adopted stationary error covariance for the summer thermal
structure as a case study. This is an efficient way to examine the
feasibility of the DA implementation in a complex water system,
toward improving a sophisticated operational forecasting system
with assimilative capability. The construction of time-varying error
covariance and the consideration of cross-correlation with
dynamic constraints amongmultiple state variables need to be fur-
ther investigated at the next stage (Kalnay, 2003; Li et al., 2008a, b;
Brousseau et al., 2012; Waller et al., 2014). This also requires more
observational data and large size ensemble simulations to deter-
mine the error spreading pattern. This flow-dependent covariance
is particularly important when assimilating variables such as water
currents or water level that are characterized by short decorrela-
tion time scale and spatial scale (Kuragano et al., 2000; Xue
et al., 2011; Li et al., 2015). Ultimately, developing a GLOFS-DA
framework with a time-varying error covariance using rank-
reduction (e.g. Fukumori and Malanotte-Rizzoli, 1995; Verlaan
and Heemink, 1997; Pham et al., 1998; Fukumori, 2002; Cao
et al., 2007; Cosme and et al., 2010; Xue et al., 2011) and ensemble
representation (Evensen 2009; Anderson 2001; Houtekamer and
Mitchell, 2001; Whitaker et al., 2002; Houtekamer et al., 2005;
Torn and et al., 2009; Xue et al., 2011, 2012; Houtekamer and
Zhang, 2016) is the long-term goal.
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Appendix A. Localized OI assimilation scheme

Under the condition that an observation yj has its own influence
area and model correction are made only within the influence area
of the observation based on the model-data misfit at the observa-
tion location, it becomes a specific case to apply Eqs. (1) and (2) for
a single observation. Observation error covariance matrix R is
reduced to a scalar as observation error variance

r2
yj
¼ yj �Hxt

� �
yj �Hxt
� �T ,HBHT is also reduced to a scalar, which

is the model error variance r2
myj

at the observation location, defined

as ðHxf �HxtÞðHxf �HxtÞT . BHT is reduced to a vector whose ele-

ment is the model error covariance cov mi;myj

� �
of model error
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at each model grid mi; i ¼ 1;2::; L within the influence area and
model error at the observation location. In this case, the analysis
Eqs. (1) and (2) is combined as

xami
¼ xfmi

þ cov mi;myj

� �
� 1
r2

myj
þ r2

yj

� dj ðA1Þ

Since

Cov mi;myj

� �
¼ corr mi;myj

� �
� rmi

� rmyj
ðA2Þ

It follows that

xami
¼ xfmi

þ corr mi;myj

� �
�
rmi

� rmyj

r2
myj

þ r2
yj

� dj ðA3Þ

where i ¼ 1;2; � � � L, and mi denotes the total L model grids within
the influence area of a given observation station yj, corrðmi; myi Þ is
the correlation between modeling error at model grid mi and mod-
eling error at the location of observation yj, rmi

and r2
myj

are vari-

ances of modeling error at the grid mi and at the location of the
observation yj. r2

yj
is the observation error variance at the observa-

tion yj.
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